广州西门子模块授权供应商
广州西门子模块授权供应商
对于高压、大容量的变频器进行测试,由于电压、电流数值较大,一般的仪表不能满足要求,要采用电压或电流传感器,然后再接仪表进行测量。WP4000变频功率分析仪根据搭配不同的变频功率传感器Z高测试可实现电压10kV、电流7000A高压变频器的输入、输出、效率测试。
包括:
输入值:额定输入电压、额定输入电流、额定容量、有功功率、功率因数、输入各次谐波、输入总谐波失真度。
输出值:Z大额定输出电压、额定连续电流、额定功率、频率范围、过载能力、输出各次谐波、输出总谐波失真度。
效率:在设计的频率范围内,各个频率下的效率。
2基本原理
高压大功率变频调速装置被广泛地应用于大型矿业生产厂、石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。广州西门子模块授权供应商
在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的**。随着市场经济的发展和自动化,智能化程度的**,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、**产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。对泵类负载进行调速控制的好处甚多。从应用实例看,大多已取得了较好的效果(有的节能高达30%-40%),大幅度降低了自来水厂的制水成本,**了自动化程度,且有利于泵机和管网的降压运行,减少了渗漏、爆管,可延长设备使用寿命。
调节方法
泵类负载的**调节方法及原理
泵类负载通常以所输送的液体**为控制参数,为此,常采用阀门控制和转速控制两种方法。
阀门控制
这种方法是借助改变出口阀门开度的大小来调节**的。它是一种相沿已久的机械方法。阀门控制的实质是改变管道中流体阻力的大小来改变**。因为泵的转速不变,其扬程特性曲线H-Q保持不变。
当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,**为Qa,泵出口压头为Ha。若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时**为Qb,泵出口压头升高到Hb。则压头的升高量为:ΔHb=Hb-Ha。于是产生了阴线部分所示的能量损失:ΔPb=ΔHb×Qb 。
转速控制
借助改变泵的转速来调节**,这是一种先进的电子控制方法。转速控制的实质是通过改变所输送液体的能量来改变**。因为只是转速变化,阀门的开度不变,如图2所示,管阻特性曲线R1-Q也就维持不变。额定转速时的扬程特性曲线Ha-Q与管阻特性曲线相交于点A,**为Qa,出口扬程为Ha。广州西门子模块授权供应商
当转速降低时,扬程特性曲线变为Hc-Q,它与管阻特性曲线R1-Q的交点将下移到C,流变为为Qc 。此时,假设将**Qc控制为阀门控制方式下的**Qb,则泵的出口压头将降低到Hc。因此,与阀门控制方式相比压头降低了:ΔHc=Ha-Hc。据此可节约能量为:ΔPc=ΔHc×Qb。与阀门控制方式相比,其节约的能量为:P=ΔPb+ΔPc=(ΔHb-ΔHc)×Qb。
将这两种方法相比较可见,在**相同的情况下,转速控制避免了阀门控制下因压头的升高和管阻增大所带来的能量损失。在**减小时,转速控制使压头反而大幅度降低,所以它只需要一个比阀门控制小得多的,得以充分利用的功率损耗。广州西门子模块授权供应商
通过分析,变频器在泵类负载的调速过程中,是可以供水方式进行优化的,已达到更好的节电效果。
PLC(可编程逻辑控制器)作为工业自动化领域中的重要设备,它可以通过编程实现对生产过程的控制和监控。掌握PLC控制原理,需要了解电路的设计方法和控制原理。本文将介绍4种基本的控制电路设计方法,以帮助读者更好地理解PLC控制原理。
基本电路控制方法
基本电路控制方法是控制电路设计的一种*基本的方法。通过设置开关控制电源的通断,可以实现对电路的控制。这种方法简单易懂,对于初学者来说是一个很好的入门方法。然而,基本电路控制方法存在着很多的局限性,不能满足复杂的控制需求。
时间控制电路方法
时间控制电路方法是通过设置时间继电器实现对电路的控制。时间继电器具有时间延迟的功能,可以根据需要设置不同的延迟时间。通过时间控制电路方法可以实现对电路的时序控制,适用于需要按照一定时间顺序控制的场合。
逻辑控制电路方法
逻辑控制电路方法是通过逻辑门电路实现对电路的控制。逻辑门电路包括与门、或门、非门等。通过逻辑门电路可以实现对电路的逻辑控制,适用于需要对多个电路进行逻辑控制的场合。
由于在变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。
高压型
由于在变频器的直流环节采用了电容元件而得名,随着技术的进步,高压变频器可以实现四象限运行,也能实现矢量控制,已经成为当前传动系统调速的主流产品。广州西门子模块授权供应商
高低高型
采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网电压降到低压变频器额定或允许的电压输入范围内,经变频器的变换形成频率和幅度都可变的交流电,再经过升压变压器变换成电机所需要的电压等级。
这种方式,由于采用标准的低压变频器,配合降压,升压变压器,故可以任意匹配电网及电动机的电压等级,容量小的时候(<500KW)改造成本较直接高压变频器低。缺点是升降压变压器体积大,比较笨重,频率范围易受变压器的影响,还有就是由于引入了变压器使得系统效率比较低。
它既可以实现二极管中点嵌位,也可以实现三电平或更多电平的输出,其技术难度较直接器件串联型变频器低。由于直流环节采用了电容元件,因此它仍属于电压型变频器。这种变频器需要设置输入变压器,它的作用是隔离与星角变换,能够实现12脉冲整流,并提供中间嵌位零电平。通过辅助二极管将IGBT等功率器件强行嵌位于中间零电平上,从而使IGBT两端不会因过压而烧毁,又实现了多电平的输出。
这种变频器结构,输出可以不安装正弦波滤波器。但是由于采用了变压器,成本上有所增加。